Bidding Clubs

a subset of a talk given at Infonomics Workshop, Maastricht

Kevin Leyton-Brown Yoav Shoham Moshe Tennenholtz

What kind of intelligent system could help bidders in an auction?

- proxy bidders (eBay, etc.)
 - really just transform English into 2nd-price auction
- automation
- aggregation of information from different auctions
- bidding advice, decision support
- bidding clubs
 - instead of helping one user, help a group
 - aggregate bidders' market power
 - unlike "buyer clubs", bidders' interests not aligned
 - self-enforcing collusive agreement: increase expected utility

Collusion Example

- Imagine a first-price auction with 6 bidders,
 3 of whom decide to collude in advance
 - Is there a pre-agreement that can benefit some, but penalize none?
- Naïve proposal:
 - each bidder submits her valuation
 - the two low bidders drop out
 - the bidder with the highest valuation bids lower in the main auction
 - Bidders have an incentive to lie in the pre-auction!
 - this is true even if the high bidder pays the other two to drop out

Bidding Clubs

* with Y. Shoham, M. Tennenholtz (EC'00)

- Bidders:
 - $\square N = \{1, 2, ..., n\}: a \text{ set of bidders who will participate in an auction, } A$
 - \Box $G \subset N$: a set of bidders who are invited to participate in a pre-auction
 - Coordinator c:
 - Can c hold a pre-auction that will benefit some of G and penalize none?

Assumptions: Coordinator

The coordinator:

- invites some subset of bidders to participate
 non-binding invitation
- may enforce payments from, between bidders
- cannot cost money to operate
- acts only as a representative of bidders
 - why can it be trusted to act reliably?
 - one way of looking at it is that c combines with A to form a new mechanism
 - \Box c's behavior is fully specified, common knowledge

Assumptions: Bidders

- IPV model, no externalities
- IID from distribution F
- First-price auction equilibrium bid:
 b(F, n, v)
- *F* regular: $\Box \ b(F, n+1, v_i) > b(F, n, v_i), n \ge 2$

Deviation from standard GT setting

- Uninvited agents are not aware of the possibility of the existence of a coordinator
 - they believe that each bid placed corresponds to a single bidder
 - they may be wrong about the number of bidders "actually" participating in auction
 - □ Is this realistic? Maybe so for electronic auctions.

Equilibrium concept

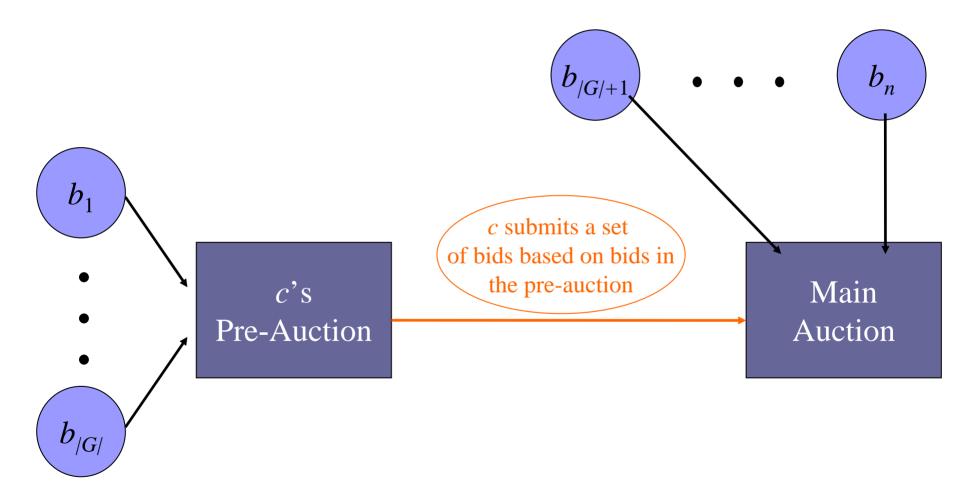
"Bayes-Nash with misconceptions"

Bidding Club Protocol

- 1. Coordinator c invites agents from G to participate in a pre-auction
- 2. Bidders decide whether to accept the invitation
- c asks agents for their valuations
 - agents may lie!
- 4. *c* bids on behalf of some or all bidders in the main auction
- 5. *c* may impose monetary transfers between and from bidding club members

Problem Illustration

(assuming all invited bidders participate in the pre-auction)



Utility-Improving Coordinator

1. Every agent in *G* who would have participated in *A* will choose to participate in the bidding club

2. Each agents' expected utility from participating in the bidding club is greater than his expected utility in *A*

Second-Price Auction: Protocol

* in the spirit of Graham & Marshall, 1987

A utility-improving coordinator exists for second-price auctions.

- 1. Agents from G submit valuations to coordinator c
- 2. If any agent chose not to participate:
 - submit a bid for each agent i who did elect to participate with price offer $v_{i'}$ and end the protocol
- 3. Let v_1 , v_2 be the two highest valuations announced, by agent 1 and agent 2 respectively
- 4. Only agent 1 is represented in the main auction, with a bid of v_1
- 5. If agent 1 wins, he must pay v_{sec} to the auctioneer and $\max(v_2 v_{sec}$, 0) to c
- 6. c gives a payment of p to all agents in G

Calculating p

Assume agents truthful, participate

- Taking into account only n, /G/, F, it is possible for c to calculate his expected gain, g
 - c gains whenever both the global highest and secondhighest bids are members of the bidding club
- Pick any $s \ge |G|$; set p = g/s
- On expectation c will:
 - be budget balanced when s = /G/
 - \square make a profit when s > /G/

Why this works

- Incentive Compatibility:
 - With p = 0, the allocation rule and payment rule are exactly the same as in second-price auction
 - the standard argument for incentive compatibility applies
 - p does not depend on agents' declarations, so this payment does not affect agents' strategies
 - The bidding club increases agents' expected gain
 - Exactly the same outcome as in second-price auction
 - But: all bidders receive an additional payment of p > 0
 - Declining participation is not informative:
 - All bidders from *G* will bid their valuations

Observations

- The coordinator's maximum loss in a given round is /G/p = /G/g/s.
 - Since s may be arbitrarily big, maximum loss may be set arbitrarily close to 0
 - \Box c keeps all but an arbitrarily small fraction of g
 - Efficiency of the auction is preserved
 - Revenue equivalence: doesn't hold because a bidder in G who bids 0 can still gain p

First-Price Auction: Protocol

A utility-improving coordinator exists for first-price auctions

- 1. Agents from G submit valuations to c
- 2. If any agent declined to participate
 - submit a bid for each agent i who did elect to participate with price offer $b(F, n, v_i)$, and end the protocol
- 3. Submit a bid for (only) the bidder from *G* with the highest valuation, of $b(F, m, v_1)$, m = n |G| + 1
- 4. If he wins, his payment to c is $b(F, n, v_1) b(F, m, v_1)$
- 5. c gives a payment of p to all agents in G

Calculating p

Assume agents truthful, participate

- Taking into account only n, /G/, F, it is possible for c to calculate his expected gain, g
 - c gains $b(F, n, v_1) b(F, m, v_1)$ whenever the globally highest bidder is a member of G
 - Pick any $s \ge |G|$; set p = g/s as before

Why this works

- Incentive Compatibility:
 - With p = 0, the allocation rule and payment rule are exactly the same as in first-price auction
 - c implements a revelation mechanism
 - p does not depend on agents' declarations, so this payment does not affect agents' strategies
 - The bidding club increases agents' expected gain
 - Exactly the same outcome as in first-price auction
 - But: all bidders receive an additional payment of p > 0
 - Declining participation is not informative:
 - Every agent in *G* will follow the equilibrium strategy
 - The bidding club benefits agents outside G
 - their equilibrium bids are reduced

Other bidding club protocols

I've described:

- Second-Price (/Japanese)
- □ First-price (/Dutch)
- Other protocols:
 - General mechanisms
 - with valuations drawn from a finite set
 - \square N parallel 2nd-price auctions for substitute goods
 - Two parallel auctions for complementary goods